Schemes 2018 Exercise 3

Question 1. Let $A \subseteq B$ be rings such that B is integral over A.

- Let \mathfrak{b} be an ideal in B. Prove that B / \mathfrak{b} is integral over $A /(A \cap \mathfrak{b})$
- For every multiplicative system $S \subseteq A, S^{-1} B$ is integral over $S^{-1} A$.

Question 2. Let $A \subseteq B$ and let C be the integral closure of A in B. Let S be a mult. system in A. Prove that $S^{-1} C$ is the integral closure of $S^{-1} A$ in $S^{-1} B$.

Question 3. Prove that a UFD (unique factorization domain) is integrally closed. i.e. it is integrally closed in its field of fractions.

A property P of rings is called local if TFAE:

- A has P.
- $A_{\mathfrak{p}}$ has P for every prime ideal \mathfrak{p}.
- $A_{\mathfrak{m}}$ has P for every maximal ideal \mathfrak{m}.

Question 4. Let A be an integral domain. Prove that being integrally closed is a local property for A.
Question 5. - Let C be the integral closure of A in B. Then the integral closure of an ideal $\mathfrak{a} \subseteq A$ in B is $\sqrt{\mathfrak{a} C}$.

- Let $A \subseteq B$ be integral domains, with A integrally closed. Let $\mathfrak{a} \subseteq A$ be an ideal and $x \in B$ integral over \mathfrak{a}. Then if $t^{n}+\ldots+a_{0}$ is the minimal monic poly. for x over $A_{\{0\}}$ then $a_{i} \in \sqrt{a}$.
- Prove the "going down theorem": Let A be integrally closed and $A \subseteq B$ integral over A. Let $\mathfrak{p}_{1} \supset$ $\ldots \supset \mathfrak{p}_{\mathfrak{n}}$ be prime ideals in A. Let $\mathfrak{q}_{1} \supset \ldots \supset \mathfrak{q}_{\mathfrak{m}}$ be a sequence lifting \mathfrak{p}_{i} to $B, i=1, \ldots, m$. Then it can be completed to a lifting of all the \mathfrak{p}_{i}.
Question 6. ${ }^{*}$ Let $R=\mathbb{C}[x, y] /\left(x^{2}(x+1)-y^{2}\right)$.
- Find the integral closure of this ring in its field of fractions.
- Denote the integral closure of R by \tilde{R}. Let $i: R \rightarrow \tilde{R}$ be the inclusion. Find all the closed points for which $\left(i^{*}\right)^{-1}(x)$ contains more then one point.
- *Draw the set of solutions to the equation $x^{2}(x+1)=y^{2}$ (i.e. the real points). What is special about the points you found in the previous bullet? (this is not a precise mathematical question, so I don't expect precise answer!)

